The effect of insect surface features on the adhesion of viscous capture threads spun by orb-weaving spiders.

نویسندگان

  • Brent D Opell
  • Harold S Schwend
چکیده

Spider orb-webs intercept a broad range of insects and their capture threads must adhere to a range of surface textures. In species of the Araneoidea clade, these capture threads are composed of viscid droplets whose size and spacing differ among species. To determine how droplet profile and insect surface texture interact, we measured the stickiness of viscous threads produced by four species using four insect surfaces that ranged from a smooth beetle elytra to the dorsal surface of a fly abdomen that was covered by large, widely spaced setae. The adhesion of threads to these surfaces differed by as much as 3.5-fold within a spider species and 2.1-fold for the same insect surface between spider species. However, 96% of these differences in stickiness was explained by four variables: the ratio of natural log of droplet volume to setal length, the natural log of droplet volume per mm of thread length, setal surface area, and the area of cuticle not excluded from thread contact by setae. Compared with previous measurements of primitive cribellar capture threads produced by orb weavers of the Deinopoidea clade, viscous threads performed more uniformly over the range of insect surfaces. They also held bug hemelytra, which were densely covered with fine setae, more securely, but held beetle elytra, fly wings and fly abdomens less securely than did viscous threads. Hemelytra may be held more securely because their setae more easily penetrate the viscous boundary layer to establish a greater area of interaction and, after having done so, offer more resistance as they are pulled through this layer. Finely textured surfaces may also have higher effective surface energies and therefore may interact more completely with viscous material.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adhesive recruitment by the viscous capture threads of araneoid orb-weaving spiders.

The sticky prey capture threads of orb-webs are critical to web performance. By retaining insects that strike the web, these spirally arrayed threads allow a spider time to locate and subdue prey. The viscous capture threads spun by modern orb-weaving spiders of the Araneoidea clade replaced the dry, fuzzy cribellar capture threads of the Deinopoidea and feature regularly spaced moist, adhesive...

متن کامل

The contribution of axial fiber extensibility to the adhesion of viscous capture threads spun by orb-weaving spiders.

The viscous capture threads produced by over 4000 species of orb-weaving spiders are formed of regularly spaced aqueous droplets supported by a pair of axial fibers. These threads register increased stickiness when spans of increasing lengths contact a surface, indicating that adhesion is recruited from multiple droplets. This study examined threads produced by five species to test the hypothes...

متن کامل

Persistent stickiness of viscous capture threads produced by araneoid orb-weaving spiders.

The most commonly encountered spider orb-webs rely on sticky, viscous capture threads to retain prey. These threads are composed of supporting fibers covered by a complex aqueous solution that forms a series of droplets, each with a glycoprotein granule that confers adhesion. This adhesive system normally functions for less than a day before being replaced. Despite their ephemeral nature, we fo...

متن کامل

Constraints on the adhesion of viscous threads spun by orb-weaving spiders: the tensile strength of glycoprotein glue exceeds its adhesion.

In this study we tested the hypothesis that a viscous thread releases its hold on a surface because its glycoprotein glue pulls from the surface and not because its elongating droplets break near their attachment to the surface. We compared the values obtained when three species' viscous threads adhered to four smooth surfaces, which differed in their total surface energy and in the proportions...

متن کامل

Spider orb webs rely on radial threads to absorb prey kinetic energy.

The kinetic energy of flying insect prey is a formidable challenge for orb-weaving spiders. These spiders construct two-dimensional, round webs from a combination of stiff, strong radial silk and highly elastic, glue-coated capture spirals. Orb webs must first stop the flight of insect prey and then retain those insects long enough to be subdued by the spiders. Consequently, spider silks rank a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 210 Pt 13  شماره 

صفحات  -

تاریخ انتشار 2007